Printing Temperature

Many customers want to know if there is a standardized temperature for printing with various materials. The short answer is that there are not universal temperature settings that will work with every type of material from every manufacturer. It is possible, for example, that two competing brands of ABS filament will have two different optimal heat settings because of variations in their composition.

Airwolf 3D goes to great lengths to provide its customers with a generally accepted range of operating temperatures that are commonly used with various materials. These temperature recommendations can be found on our Dropbox.

Users may also create a free account with AstroPrint at This application takes much of the guesswork out of 3D printing by suggesting optimal settings based on a wide range of factors such as the user’s printer model, his/her printing materials, and the chosen printing quality.

There are a couple of general rules for users who wish to experiment with temperature settings. First, there is not a single temperature for printing with any specific material. There is a temperature range.  Polycarbonate filament, for example, begins to soften at approximately 147°C (297°F) but it does not become liquefied enough to extrude until it reaches approximately 300°C to 315°C (572-599°F).

Secondly, your nozzle temperature setting will determine how fast you can print. Think of your 3D printer as a giant glue gun. If your glue gun cannot warm up the glue stick quickly enough, no amount of squeezing the handle will get it to extrude. The same is true of 3D printers. It takes time to liquefy the filament at the appropriate extruding temperature, and some materials (especially heat resistant materials) cannot be rushed. So there will always be a balance between print speed and print temperature. The trick is finding the sweet spot where a 3D printer can print quickly, but not so quickly that it out paces its supply of molten filament.

Back To Top

Height Adustment

After making sure the bed is level, adjusting the height of the first layer is the next step. To do this, place the nozzle over the center of the heated bed. Slowly lower the nozzle at 1mm increments until the nozzle lightly touches the glass. If the Z axis microswitch did not activate, raise the nozzle up and turn the height adjustment screw clockwise 1/4 turn. Now lower the nozzle again and repeat the process as necessary until the space between the nozzle and the glass is approximately the thickness of two pieces of paper. Do not become overly concerned with the height, just make sure that the nozzle DOES NOT hit the glass when it homes on the Z axis. After making your first print, you can adjust the height adjustment screw to dial in the perfect first layer thickness. Also keep in mind that the thickness of glass may vary from piece to piece, so it may be necessary to adjust height for different pieces of glass.

Back To Top

Getting Parts to Stick

Getting proper stick is a function of the following factors: 1) correct first layer height; 2) sufficient heat; and 3) properly preparing the surface.

Before going any further make sure the bed is level and the left/right adjustment is correct.

After leveling the bed, make sure the first layer is going down properly. In Slic3r, make sure that you are using at least two loops to go around the part (essentially to prime the hot end) and run the first layer at a slower speed than the remainder of the part (between 50-80%). Once printing, look closely at how the first layer goes down. The thickness of the first layer should be somewhere between a flat surface and a tube. Maybe the best way to describe it is as a pancake. If the bed is level, the thickness of the first layer should be consistent throughout the first layer. Another trick in the latest version of Slic3r is to increase the first layer percentage (to say 200%). Finally, on large parts specifying a “brim” (through Slic3r) also tends to prevent lift-off.

Heat is also an important factor. Too little heat and the parts will NOT stick, no matter what you do (for ABS). Too much heat, and the parts will stick well, but the sidewalls will have an hourglass shape (from heat warping). The heated bed is hardwired to the power supply. At 12 volts, the bed will get to about 110 degrees C. This value can be manipulated by adjusting the voltage on the power supply (be careful). The more voltage, the higher the temperature, the less voltage, the lower the temperature.

Finally, you must make sure that the surface is prepped. ABS will not stick to glass. The best solution we have found is to coat the glass with PET tape (or Kapton tape). When printing, make sure that the PET surface is facing up. Also, we have found that applying a thin layer of a mixture of ABS and acetone to the surface will further increase grip. Mix the ABS into the acetone so that the liquid appears cloudy. Too little ABS and the solution will not increase stick, too much ABS, and the parts will not come off.

Back To Top

Leveling the Bed

One of the common preconceptions about reprap-style printers is that they are a nightmare to setup.  With AW3D, we have attempted to change all that.  Follow these simple instructions, and in 5 minutes you will be set.  As long as you don’t move the machine around too much, these settings should remain and the bed should not need to be re-leveled.  We regularly transport our printers and rarely have to re-calibrate them.

First, run the circle calibration file.  If your bed is not leveled, you will notice that the circle has high and low points and that some parts of the circle stick to the glass and some do not (make sure you are printing on PET or Kapton-coated glass misted with a mixture of ABS and acetone).

If the left side of the circle is low and the right side is high, or vice versa, the left/right adjustment will be your first adjustment.  For this adjustment, hold one of the flexible Z couplers and turn the other (they tend to rotate together because of the magnetic connection).  Turning a coupler clockwise, will raise the hot end, while turning the coupler counterclockwise, will lower the hot end.  Once you have made the adjustment, run the circle calibration again to see the results.  Repeat until the left and right side print heights are the same (within reason).

Once the left/right adjustment is completed, you should adjust the finer adjustments located directly on the bed.  As background, the PCB bed is connected to an upper rectangular aluminum frame which is connected to a lower aluminum supporting frame (that holds the lm8uu bearings and supports movement on the y axis).  The upper frame is coupled to the lower frame with three bolts (for leveling, a fourth bolt would be redundant and only drive you crazy).  The rearmost bolt is fixed (or “pinned”), so the only adjustments are the two spring-loaded bolts at the front left and right of the upper frame.  Because the bolts are fixed at their bases, the only adjustment needed is to the top nut on either.  By turning the but in (1/4 turn at a time), you will notice that the plate lowers on that corner and raises on the opposing diagonal corner.  Adjust the nuts and reprint as necessary until getting an optimum circle.  Remember, to adjust overall height, adjust the allen bolts on the left X bracket.

Back To Top

Layer Height

Generally, printing at finer layer heights brings more details out of the 3D model.  For example, if you have a complex shape such as an animal, you will see much more detail when using a .1mm layer height as you would with a .4mm layer height (4 times the detail on the Z axis).  Things such as the eyes, ears, and feet, will be much more detailed along the z axis with the finer layer height.  Remember however, that the finer you go on layer height, the better leveled the bed must be (new versions of Slic3r help compensate by allowing you to lay down more plastic on the first layer).

Before changing all your print heights however, there are several factors to consider.  First, the general rule is that the maximum layer height for a given nozzle is 80% of the nozzle diameter.  Therefore, with a .5mm nozzle (standard on AW3D v.5), your maximum layer height would be .4mm.  Indeed, we print out the Gen6 cover at .4mm.  The other parts however are printed out at finer layer heights, going down to .15mm for the herringbone gears (to pull out the resolution on the herringbone pattern on the Z axis).

Another consideration is print speed.  With finer layer heights, each layer will take the same speed, however, there will be more layers for smaller layer heights.  A .1mm layer height part will take 4 times a long to print as the same part printed out at .4mm.

Finally, when you go too fine on the layer height, the extrusion may simply be too slow to get accurate feed through the hot end.  On the .5mm nozzle, the minimum layer height should be .1mm to achieve optimal results.

Back To Top

Getting the Best Prints

The key to getting the best prints is mastering your slicing software. Programs such as Cura perform an action called “slicing”, which converts your STL file into gcode. In Cura, you can change numerous settings to achieve a perfect print. Customers are often surprised when prints, which seemed virtually unprintable, now come out perfectly with only a few tweaks to the Cura settings. The printer itself is incredibly accurate; it is just a matter of giving it the proper inputs.

A good place to start is with relatively small prints. Using a small, simple print will allow you to quickly tell if all of your settings are correct. Start with a part that is approximately 2-4 inches in diameter that preferably does not need support. Open up Cura and import our recommended settings profile for the filament you are printign with (provided on the USB drive received with your printer). Slice the part with those settings, then run the print. If the part printed out great, there is no need to tweak any settings, unless you want to change some of them slightly to get a faster prints. Here are some things to keep in mind:

Speed – The slower you print, the less room for error. This does not necessarily mean errors in the accuracy of the machine, rather, errors in the filament. For example, if you specify a slow speed for the perimeters (to get a nice outer surface), but try to cheat a bit by specifying high infill speeds, this will often result in some flaws. This may lead to blobs in parts of the print where the nozzle passes from an infill section to a perimeter. This happens because pressure builds up in the hot end during the high speed infill. When moving to a perimeter where the pritn speed slows, that pressure spikes and you will see blobs corresponding to the spikes. To minimize this problem, be conservative in the differences between your infill and perimeter speeds.

Cooling – One of the great features available in Cura is the ability to control the speed of the print though the “Cooling” settings. For instance, if you wanted to print out an object with an hourglass cross-section, such as a trophy, without the cooling settings, your results would be disastrous. The reason for this is the printed layers of filament need time to cool before the next layers can be printed onto them. While the base of your trophy may print out well, the thin cross-section of the center portion will be problematic. The plastic would not have enough time to “set” before the next layer is printed. When the plastic “sets,” it is cooling and decreasing in volume. If the layer does not have time to cool, the next layer will print onto the soft underlayer and will likely warp or have a “melted” look. Things will not straighten out until the layer speed correlates to the time it take for the filament to set. This is where “Cooling” comes into play. With cooling, you can specify a minimum layer time. We use 15 seconds and a minimum speed of 1mm/s to be safe. Now when the printer approaches the center section of the trophy, Cura will have altered the gcode to slow down the print speed such that the layer is printed in no less than 15 seconds. As the printer reachs larger layers, it will begin printing faster until it hits your set print speed.

Back To Top

Belt Tensioning

3d printer integrated belt tensioningBelt tension is important to ensure optimal printing.  Theoretically, the belts will not need to be retensioned, but after shipping or adjustments, it’s good practice to recheck tension.

On the Y axis, move the plate all the way to the back of the machine so that it contacts the y axis microswitch.  Now, flick the y axis belt.  You should hear a deep, chello-type frequency.  If the belt is too loose, loosen the 13mm nuts that hold the threaded rod on the front of the machine.  You should loosen a total of four nuts: two on the outermost ends of the rod, and one each on the supports that hold the smooth rods.  With the nuts loosened, slide the threaded rod back and tighten the four nuts.  Now recheck the tension on the belt and repeat if necessary.

On the X axis, move the X carriage all the way to the left of the machine so that it contacts the x axis microswitch.  Now, flick the x axis belt.  Like the y axis adjustment, you should hear a deep, chello-type frequency.  If the belt is too loose, loosen the 13mm nut and bolt on the right X bracket of the machine.  With the adjuster loosened, slide the adjuster to tighten the belt and tighten the adjuster (don’t over tighten).  Now recheck the tension on the belt and repeat if necessary.


Back To Top

Getting Started With Airwolf 3D Printer Slic3r Configurations

Here is your Airwolf 3D Printer Quick Guide to Slic3r Configurations

What is a Config?

Slicing can be a little daunting at first and it is easy to get lost in the world of Slic3r settings! For your convenience we have included several configuration files for Slic3r 7.2b to get you started with your 3D printer.   Version 7.2b is stable and very user friendly-the newer versions tend to perform better, but are best left to later, once you have mastered the basics. A Slic3r configuration file is also called a “config” file and is a 3d printer profile that you can load and it will automatically populate all of the settings in Slic3r. This type of file has an “.ini” extension. Please refer to the easy to read chart at the end of your 3d printer user manual entitled “3D Printer Slic3r Configurations”. If you look at this chart of parts, you will see that the parts are individually identified and then grouped together by “plate”. They are grouped as such because certain parts have similar optimal 3D print settings. For example, some parts can be 3D printed very fast such as parts with many straight lines and without many complex curvatures (plate 5), while other parts should be printed very slow to reach higher resolution, such as the gears.

3D Printer Slic3r Configurations config files ending in ini

Selecting the Right 3D Printer Slic3r Configurations

If you take a look at the folders in your flash drive, you will find the following folder: STL GCODE SLIC3R CONFIG\Slic3r Config

As of 01/21/13, the configuration files are as follows:

Gearset .25mm .5 nozzle –  Setting to slice “Wolf Plate 4” which is comprised of mostly gears.  These parts need to be super strong and very solid. This configuration file calls for .25mm layer heights, at a slow speed with a nearly solid (85%) infill.

Gen6 Cover .4mm .5 nozzle – Setting to slice “Wolf Plate 5” which is comprised of the cover for the circuit board on your 3D printer. This is a setting for fast, non organic parts without too much fine detail that can be 3D printed with a thicker (.4mm) layer height.Gearset .25mm .5 nozzle – Setting to slice “Wolf Plate 4” which is comprised of mostly gears. These parts need to be super strong and very solid. This configuration file calls for .25mm layer heights, at a slow speed with a nearly solid (85%) infill.

Slow Parts .25mm .5 nozzle – Setting to slice smaller parts at a .25mm layer height. Slower than above, but fast enough to 3D print out decent-sized parts at a good pace.

Standard .25mm .5 no – Setting to slice “Wolf Plates 1,2,3” which is comprised of most of the parts on the 3d printer. This is a workhorse setting for quickly processing several objects at once at 35% fill. We have recently started using a higher fill percentage (50%) for even stronger parts. Only use this setting once you have mastered printing and are comfortable that the bed is level and the first layer height is correct.

Very Precise .2mm .5 nozzle – – Setting to slice any part accurately. These are the same speed settings as the Gearset configuration, but the infill has been reduced to .35% to save time. Use this setting to start with as it causes less pressure buildup in the nozzle and is less prone to jamming the extruder if the first layer height or bed level is not correctly set.

3D Printer Slic3r Configurations chart of parts in purple

Loading 3D Printer Slic3r Configurations

Open up Slic3r 7.2. Then select “load config..” A window will open up and you will select a configuration file provided on your flash drive. Once loaded, it will populate all of the settings in slic3r and voila! You are ready to slice.

3D Printer Slic3r Configurations loading ini file

When slicing a unique part, take a look at your Airwolf 3D printer first and identify a part most like your unique model. You can use the suitable config file and customize it to suit your needs! Once you have the hang of the basic Slic3r settings, you are ready to move on to the next wiki topic “Slicing 101 Effects of Layer Height on 3D Printed Parts” to read up on intermediate slicing techniques.

Download Airwolf 3D Printer Slic3r Configurations

You can also download your Airwolf 3D printer Slic3r configurations below.
[box type=”download”]DOWNLOAD FILES HERE.  Has this information been useful?  We appreciate your feedback.  [wpdm_file id=40][wpdm_file id=39][wpdm_file id=41][wpdm_file id=42][wpdm_file id=43][/pwal]

Available downloadable files:  Configuration files for Airwolf 3D Printer V.5 with .5mm nozzle[/box]
A word about Slic3r:  Slic3r is free software, developed byAlessandro Ranellucci with the help of contributors and community.  Please consider a donation (more about donations).You can download the Slic3r software here.

3D Printer Slic3r Configurations website to download




Back To Top

Apply PET film on 3D printer glass

This is how the team at Airwolf 3D applies PET film to 3d printer glass plates

What is PET film and how does it affect 3D printers?

Airwolf 3D printers applies a polyester film (PET) to the borosilicate glass plate before shipping out with a new 3D printer or 3D printer kit. We have found that ABS adheres to PET better than Kapton and it is more durable than Kapton, resulting in better part stick and less tears to the printing surface.
One of the PET products that we like to use is a 200mm wide strip of PET adhesive green tape that is approximately 0.06mm thickness. This particular product is sold on a roll and has no backing (liner). This is a high temperature resistant film which is often used as an electroplate mask shield during a wave solder process on PCB .
We apply this film to the glass using a “wet” method, which is similar to applying tint to a car window. The benefit here is that this is a good method for beginners, as the wet film is much more forgiving and can be manipulated and repositioned during application. The downside is that the film will need to “cure” for at least 10 hours, during which time the moisture will evaporate and the PET will adhere to the glass well. If you use the glass too soon, you run the risk of forming bubbles under the PET film when the glass is heated up.

What parts and tools are necessary to apply PET film?

We recommend the following parts and tools:
• Glass plate (very clean)
• Fine mister bottle (or spray bottle) with water
• PET roll (200 mm)
• Hard installation foam (or credit card)
• Sharp blade (or exacto knife)
• One paper towel

Follow these steps to apply PET film to your glass plate

What follows are the steps we take in applying a wide strip of PET using the “wet” method.

Step one: Unrolling the PET film

Have all of your tools readily available within an arm’s reach. You will not have time to stop and go to look for something later as this is a swiftly performed procedure. Start off by finding the edge of the PET roll and then peel up a 1″ flap. Adhere this flap to the edge of a table and use your foam to press the PET into the table, ensuring a good stick. (Don’t worry about removing the film later, as this is a medium tack adhesion and typically comes off with moderate effort and does not leave a residue.)

Next, you will peel off and unroll enough film to cover your glass, about 11″. To do this hold the roll with both hands and swiftly pull it down and away from the table in one strong, quick movement. Do not stop and start during this step, because this will leave a mark or crease at your stopping section and this may result in air bubble or lines in your PET film. It is better to unroll a couple of extra inches than to fall short. Gently release the roll and let it hang in this position momentarily.

Step two: Position the PET film onto the glass

Get your glass plate and apply a fine mist of water ensuring that it is completely saturated. Try not to touch the printing surface as hands can leave a residue which may prevent proper adhesion. While lifting up the roll and film, carefully place the wet glass under the film and line it up with the glass. Once you are satisfied with the placement, hold the glass in position and use your blade to cut off the roll of PET film, leaving a 1″ flap. Then cut the other end of the film (closest to the table edge), again, leaving a 1″ flap. This will release the glass and now it should have a 1″ flap of PET on both ends.

Step three: Applying the PET film without air bubbles

Lay down the glass on a clean surface and lift one of the corners of the film about half way to the center. Hold the film up and away from the glass at a 45 degree angle and use your squeegee to press the film down and to remove any air bubbles. Work your way from the center of the glass to the corner. The center of the glass is the most important and if you see any air bubbles, it is best to pull it back up while it is wet and try again.
Next, pull up the film from the opposite corner and repeat. Do this until all of the water and air bubbles have been worked out of film.

Step four: Trim the PET flaps

Next, use your sharp blade to trim the two flaps. You will want to hold the blade against the edge of the glass and bring it in slightly so that it is at a 45 degree angle. Airwolf 3D glass plates are custom fabricated with a “pencil cut” edge, a type of beveled edge. Cutting the PET at an angle prevents the possibility of a loose flap, which might result in the film curling up later on your 3d printer glass.
Next, place your glass on a paper towel and once again use your squeegee to press out the edges and work out any residual water.
Remove it off the paper towel and set it aside on a dry, flat surface to dry for at least 10 hours before using it on the heated bed of your 3D printer. Do not leave objects on top of the surface as this may leave an imprint on the film.

[box type=”info”]

WATCH INSTRUCTIONAL VIDEO HERE. Has this information been useful? We appreciate your feedback. [pwal id=”27768765″ description=”Let us know that you like it once – then watch tutorial”]

[/pwal]Watch instructional video to apply PET film [/box]

Final notes and resources:

These are instructions for applying this particular width and thickness of PET film.  There are many other widths and thicknesses which may require different methodologies, such as a dry application.

You can find this PET film on ebay here eBay PET.

Airwolf 3D printers offers thicker sheets of PET with a liner.  PET film is available in two sizes:  PET Film XL and PET Film 5.5.

Are you looking for borosilicate 3d printer glass?  You can purchase it here, in our webstore.

Back To Top

Changing the Nozzle

nozzle 035 higher resolution 3d printingSteps for changing the nozzle:

1) Set the temperature to 240C

2) Raise the hot end so that the nozzle is at least 3″ above the bed

3) Use needle nose pliers to grip the peek tube above the heater block (to avoid inadvertently turning the heating block and ruining the thermistor and heater wires)

4) While gripping the peek, use a 13mm wrench to remove the nozzle from the hotend.

5) Turn the hot end temperature OFF

6) After the nozzle has cooled, use an exacto knife or razor blade to trim the bottom of the threaded rod to clean off excess plastic.

7) As with above, grip the peek again to ensure the heater block does not turn.

8) With a clean threaded rod and a clean new nozzle, carefully thread the new nozzle onto the threaded rod

9) VERY IMPORTANT – make sure that the interior of the nozzle seats against the threaded rod (for a proper seal) AND that the nozzle seats against the heater block (to ensure adequate heat transfer). It may be necessary to slightly rotate the peek and threaded rod to make sure both conditions are met.

10) Double check that the thermistor and heater wires have not been comprised.


Back To Top

What settings do I use for the printer?

Use the configurations that are on the USB stick that came with your 3D printer.

Configurations are a group of settings (speeds, temperatures, resolution, etc.)

You can also find more configurations here:

So Many 3D Printer Materials – So Little Time


Back To Top

How do I convert my Sketchup file into an STL file?

What are some general settings for all prints?

First Layer Height = .4mm
ABS Temperatures: (Nozzle ≥ 240C) (Bed ≥ 110C)

Back To Top

How do I adjust the Z height?

The M3 screw on the left X bracket is the Z height adjuster. This screw sets the first layer height.  A more detailed explanation can be found here in our wiki: Adjusting Height on Your Airwolf 3D Printer

Back To Top

What do I do if my ABS part isn’t sticking? Acetone ABS

Make sure that the PET film is facing up on your glass.  Use the Acetone-ABS mixture on your glass. The rule of thumb is to print until your part does not stick; then apply the mixture. Also, increasing the bed temperature slightly should help with the stick.  Below is the recipe for the acetone and ABS mixture.

Recipe for “Goo”:

  • 1/2 cup of acetone
  • 2 -3 inches of natural ABS (3 MM filament) OR a small printed ABS part

Acetone “Goo” is a great solution to problems with part stick. The Airwolf 3d printer comes with a great heated bed, that heats up entirely and evenly to minimize part curl up. We took it a step further- and covered the glass plate with PET film.
However, sometimes you want a part to have a smooth glossy ultra flat finish on its bottom (like the cover on the circuit board for your 3D printer). To achieve this, try using “goo”. Put some acetone in a jar and add a snippet of natural-color ABS (which is included with your 3D printer). Shake it up and let it dissolve for 20 minutes. Heat up the printing bed for 15 minutes. Use a small paint brush and apply a light film of “goo” to the glass plate.
Don’t be shy about it, dip your brush deep into the jar to pick up some of the dissolved milky ABS. The acetone will sizzle and dissolve but leave a light glaze on the glass plate and this will make your parts stick remarkably well. Take caution when removing the part! You may need to run the underside of the glass part under cold water to get the part to release! Remember to label your jar and keep it away from little hands.

[box type=”warning”] Don’t let the goo drip on your beautiful acrylic panels- acrylic and acetone are not friends.[/box]

Back To Top

What filament diameter can be used on the printer?

ONLY 3mm diameter filament (2.85mm measured) can be used on the printer.

3mm filament

Back To Top

There are fans next to my nozzle. When do I use them?

Fans are NOT needed for ABS. PLA is a material that needs fans. If you use the configurations that we give you, fans (ON/OFF) are already accounted for when you sliced your STL file.

Back To Top

I think my nozzle is clogged. How do I know and what do I do if it is clogged?

To see if your nozzle is clogged, raise your nozzle at least 3 inches vertically off the bed. Make sure the nozzle is up to temperature (ex. ABS ? 240C). Release the Quick Release Latch on the X carriage.  Manually push the material out of the nozzle, once it has fully heated up.  The material should slowly protrude out of the nozzle.  If it doesn’t, this means your nozzle is clogged.  You have two options, clean on the nozzle by using the instructions on our website or buy the upgraded hot end.

Back To Top

I can’t seem to connect to my printer. What should I do?

One quick way to solve electrical connecting problems is to unplug the printer from your computer, turn of the printer and hit the reset button (next the the USB cable).  This clears the circuit board of any errors.

Back To Top

I have run out of my first roll of material, where can I buy more?

Congratulations on printing through your first roll of filament! We hope that we have provided you with all of the training and tools necessary to guide you through the initial learning phase of your 3D printing adventure. If you are interested in purchasing filament directly through Airwolf 3D we currently stock some of the most popular types of filaments here in our online store. Or, if you would like to see a list of other filaments that are approved for use in Airwolf 3D printers you may browse our Materials and Filaments page. Before ordering filaments that you are unfamiliar with you will want to ensure that your print head (AKA the “nozzle”, or the “hotend”) can achieve the necessary temperature to melt the material that you plan on using. You can reference the right-hand column on the following Materials and Filaments page to determine if your print head is capable of printing with your selected material. This compatibility portion of this table refers to the user’s print head. Many users have opted to upgrade their print head but by default these are the model designations:

HDx: JRx
HD2x: JR2x

Back To Top

How Do I Install the RAMBo Driver for My 3D Printer?

Installing the RAMBo Driver

1)      Plug your printer into your computer with the USB cable.  Also insert the Airwolf USB stick provided with the printer.

2)      In the “Control Panel”, open up “Device and Printers”.  Under “Unspecified”, you should see a device labeled “RAMBo”.  Right click the device and select “Properties”.

3d printer driver 11          

3)      A second window will appear.  Under the second tab labeled “Hardware”, select “Properties”.

3d printer driver 11 (1)

4)      A third window will appear.  Under the first tab labeled “General”, select “Update Driver”.

3d printer driver 11 (3)

5)      A fourth window will appear.  Select “Browse my computer for driver software”.

3d printer driver 11 (4)

6)      Select the “Browse” button.

3d printer driver 11 (5)

7)      Browse for the Airwolf USB stick. Select the folder “Rambo Driver” and select “OK”.

3d printer driver 11 (6)

8)      That window will close and return to this screen.  Select “Next”.

3d printer driver 11 (7)

9)      Another screen may appear and say “Windows can’t verify the publisher of this driver software”.  Select “Install this driver software anyway”

3d printer driver 11 (8)

10)  If installed correctly, this is the screen you should see.  Select “Close”, “Close”, and “OK”.

3d printer driver 11 (9)

11)  Now in your “Devices and Printers”, under “Unspecified”, this is the screen you should see. The “(COM17)” is dependent on what USB port you plugged the printer into.  So yours may be a different COM number.

3d printer rambo driver 11


Related topics:

How to Update Firmware in the Gen6 and RAMBo Circuit Boards Using Arduino,

Installing unsigned Gen6 and RAMBo Drivers for Windows 8

MatterControl Pro Software For Airwolf 3D Printers




Back To Top

Unpacking 3D Printer AW3D XL

Unpacking your Airwolf 3D Printer
Model: AW3D XL

  • Box Cutter
  • Scissors
  • Wire Cutters

In this quick minute video, Courtney demonstrates the unpacking of a 3D printer.

Not much into videos?  Here are the annotations:

Your 3D printer arrives in a Double Wall Box 25″ x 25″ x 21″
Lift the foam protectors on the sides (do not completely remove yet).
Carefully remove the glass bundle. Please handle with care.
Now, remove the left and right foam protectors.
Unpack spool of filament, accessory kit and universal spool holder.
Now you are ready to lift up the 3D printer.
Lift the 3D Printer by the center back panel (it is quite sturdy).
Carefully cut and remove the plastic wrap from the 3D printer.
Cut and remove 2 fasteners from rear.
Cut and remove 4 fasteners from front.
Remove the foam inserts from the left and right sides.
Gently lift X-carriage to remove center foam.

  • 3D Printer AW3D XL
  • Universal Spool Rod
  • Spool of ABS 1 lb. (2 lb. spool for Deluxe Package)
  • Goo Recipe Kit (Instructions for Mixing ABS/Acetone and Pieces of Natural ABS)
  • Thumb Drive
  • Allen Wrenches
  • User Manual
  • Glass Plate with PET film installed
  • USB Cable (A-B)
  • Binder Clips
  • Rambo Circuit Board Accessory Kit
  • Spool Minder (Deluxe Package)
  • Spare Nozzles (Deluxe Package)

Back To Top

Privacy Policy

This privacy notice discloses the privacy practices for This privacy notice applies solely to information collected by this web site. It will notify you of the following:

  • What personally identifiable information is collected from you through the web site, how it is used and with whom it may be shared.
  • What choices are available to you regarding the use of your data.
  • The security procedures in place to protect the misuse of your information.
  • How you can correct any inaccuracies in the information.

Information Collection, Use, and Sharing

We are the sole owners of the information collected on this site. We only have access to/collect information that you voluntarily give us via email or other direct contact from you. We will not sell or rent this information to anyone.

We will use your information to respond to you, regarding the reason you contacted us. We will not share your information with any third party outside of our organization, other than as necessary to fulfill your request, e.g. to ship an order.

Unless you ask us not to, we may contact you via email in the future to tell you about specials, new products or services, or changes to this privacy policy.

Your Access to and Control Over Information

You may opt out of any future contacts from us at any time. You can do the following at any time by contacting us via the email address or phone number given on our website:

  • See what data we have about you, if any.
  • Change/correct any data we have about you.
  • Have us delete any data we have about you.
  • Express any concern you have about our use of your data.


We take precautions to protect your information. When you submit sensitive information via the website, your information is protected both online and offline.

Wherever we collect sensitive information (such as credit card data), that information is encrypted and transmitted to us in a secure way. You can verify this by looking for a closed lock icon at the bottom of your web browser, or looking for “https” at the beginning of the address of the web page.

While we use encryption to protect sensitive information transmitted online, we also protect your information offline. Only employees who need the information to perform a specific job (for example, billing or customer service) are granted access to personally identifiable information. The computers/servers in which we store personally identifiable information are kept in a secure environment.

If you feel that we are not abiding by this privacy policy, you should contact us immediately via telephone at +1-949-478-2933 or via email at

Back To Top

Return Policy

All products sold on have a 15 day return policy. Within 15 days of purchase you are welcome to return or exchange any item you find to be faulty. After 15 days of purchase, returns will not be accepted.

All shipping costs associated with the order are the responsibility of the customer.

Any item found to be broken or malfunctioning because of use beyond regular expectations or neglect by the customer will not be accepted for return.

When returning an item for exchange, the returned item must be received by Airwolf 3D before a replacement item is shipped out. If you need a rush replacement, you are welcome to purchase a replacement to be shipped out immediately. You will then be reimbursed once we receive the returned item.

Contact: info @

Back To Top

7 Steps to a shiny porcelain finish on ABS parts with acetone








Have you ever wondered how some ABS parts that are 3D printed are treated to look super shiny or made to have a ceramic finish?  Here is our latest trick for treating parts.


1 Gallon Metal Can
Metal Lid
Paper Towels
16 Magnets
4 Ounces Acetone
3 Metal Washers

Metal can size depends on size of ABS part, for example a 6 gallon pail is applicable for 11” tall ABS part.  A standard gallon size paint can will work for most 3D printed ABS parts (7” in height and smaller). It is best to use the smallest metal container possible.  A 1 Gallon paint can will be used for this demonstration.


Candy Airwolf 3D ABS acetone can treatment 1 (3)

Cut 3 paper towels into smaller pieces (or in half)
Candy Airwolf 3D ABS acetone can treatment 1 (5)

Line inside of can with paper towels
Use magnets to secure paper towels
Candy Airwolf 3D ABS acetone can treatment 1 (9)

Pour 4 ounces of Acetone into the can
Candy Airwolf 3D ABS acetone can treatment 1 (8)

Caution: Perform this in a well ventilated area! Cover with lid and shake.  Paper towels should be completely saturated

Candy Airwolf 3D ABS acetone can treatment 1 (12)

Use lid and washers to elevate the ABS part
Candy Airwolf 3D ABS acetone can treatment 1 (13)

Cover part with can and take care not to touch part
Candy Airwolf 3D ABS acetone can treatment 1 (14)

Wait for 40 minutes without removing cover
Candy Airwolf 3D ABS acetone can treatment 1 (15)

Layer lines will still be visible but the lines will continue to dissolve as part dries
Let part cure overnight which will result in a glossy ceramic-like finish


Back To Top

Contact Us

Submit a Ticket

We offer several customer support options: Answers to Frequently Asked Questions can be found in FAQ page. All inquiries are addressed within 24 hours. When contacting us via email, please include a phone number, preferred hours of contact and time zone.



Hours of Operation

Monday – Friday, 9:00am- 6:00pm

Still not convinced?

Discover the Airwolf3D Difference